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1 Introduction

1.1 Background

The global incidence of depression is on the rise (Marrie et al., 2019). This alarming trend highlights the

urgent need for new and effective tools to detect and treat depression. Early detection and treatment of

depression are crucial for improving outcomes and preventing further complications. Fortunately, recent

advancements in technology have opened up new avenues for detecting and tracking depression using

digital tools. One promising idea is to use motor activity data to classify the depressive state of individ-

uals (Aminifar et al., 2021), (Garcia-Ceja et al., 2018). This approach is exciting as it has the potential to

overcome the limitations of canonical depressive-symptom surveys and provide a more objective mea-

sure of an individual’s depressive state.

In this study, we aim to investigate the potential of motor activity as a predictor of depressive states using

motor activity (actigraph data) from (Garcia-Ceja et al., 2018). We will leverage several classifications

models including Logistic Regression, Random Forests, K-Nearest Neighbors, Support Vector Machines,

andMulti-Layered Perceptrons, and compare their performance in predicting depression based onmotor

activity. We will include sex and age as covariates in our analysis, as they may impact motor activity and

have implications for the accuracy of our models. We hypothesize that the random forest algorithm will

outperform the linear regressionmodel in classifying depressive state based onmotor activity data (H1).

We also expect that age and sex will have a significant impact on motor activity and that including them

as covariates in the logistic regression model will improve its performance in depression classification

(H2). Finally, we predict that the model will perform better on males compared to females due to poten-

tial differences in motor activity patterns between sexes (H3) and on individuals with severe depression

compared to mild/moderate depression as their motor activity may be more significantly impacted by

their depressive state (H4). Overall, this study has important implications for the development of ac-

curate and reliable tools for detecting and tracking depression using machine learning algorithms and

digital tools.

2 Methods

2.1 Data

2.1.1 Description

For all of our analysis, we used the Depresjon dataset presented in (Garcia-Ceja et al., 2018). The dataset

consists of movement activity, actigraph data data recorded using a wrist watch (actiwatch). The acti-

watchmeasures activity as a function of the duration, amount and intensity ofmovement in all directions,

using a piezo-electric accelerometer. The total activity count was measured in 1 minute periods.

The actigraph data was measured from 23 patients who were diagnosed with depression and 32 control

subjects. In addition to the actigraph data from each of the participants, meta data about each participant

was also made available. The fields present in the meta data are as follows:

1. number: Patient Identifier (Control or Condition)

2. days: Number of days of measurements

3. gender: Gender indicator (1: Females, 2: Males)

4. age: Age in age groups

5. afftype: Type of depression (1: Bipolar Depression II, 2: Unipolar Depression, 3” Bipolar Depres-

sion I)

6. melanch: Melancholia Identifier (1: Melancholia, 2: No melancholia)

7. inpatient: Inpatient Identifier (1: Inpatient, 2: Outpatient)

8. edu: Education-level grouped in years
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9. marriage: Marriage/Relationship Indicator (1: Married/Cohabiting, 2: Single)

10. work: Work Indicator: (1: Working/Studying, 2: Unemployed/On a Sick Leave/Receiving Pension)

11. madrs1: MADRS score when measurement started

12. madrs2: MADRS score when measurement stopped

2.1.2 Preprocessing

2.1.2.1 Meta Data Imputation The meta data provided with the actigraph data, had missing entries.

The missing value imputations were performed using a K-Nearest Neighbors based imputation. The

neighbors were weighted based on their distance for the imputation and points that were closer were

given higher weightage.

2.1.2.2 ActigraphDataPreprocessing Actigraphdata fromeachparticipantwasobtained. Thenum-

ber of samples varied for each participant as the days acrosswhich the datawas collected varied. For each

participant, the data was split across days and only the data where motor activity was available for en-

tire duration (1440 minutes in a day) was used for further analysis. In order to overcome the limitations

caused due to the small sample size, each day was considered as a data point for all subsequent analysis.

In addition to considering only days wheremotor activity was available for the whole duration, data from

only the days with average activity greater than a threshold activity were considered. This is explained

using graphics in Figure 1.

Figure 1: Motor Activity of Condition Participant 20. Note the extended duration of no activity towards the end in

the graph on left. Final processed actigraph data on the right.

A consolidated dataset was obtained by stacking the data of each day for every participant across both

control and condition groups. Another instance of the data was created, where the activity data was

normalized for each participant, to avoid any scaling issues arising due to individual differences.

2.1.3 Exploratory Data Analysis

Exploratory Data Analysis (EDA) was performed on the meta data. Pair plots and correlations were an-

alyzed for any trends. Some observations that we can draw from the correlation plot in Figure 2 is as

follows:

• work and (melanch, all madrs scores) are highly positively correlated. This is particularly inter-

esting because higher values of work (2), indicates that the participant is unemployed/on a sick

leave/receives pension. A positive correlation implies that people who are unemployed/on a sick

leave/receive pension, tend to bemore depressed than people who are currently working or study-

ing.

• marriage and (melanch, allmadrs scores) arehighlypositively correlated. Ahigher valueofmarriage
(2) indicates that the participant is single. Hence, the positive correlation implies that single people

tend to be more depressed.
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Figure 2: Correlation Analysis using entries in the meta data.

The pair plotswere plotted to get a better understanding of the distribution of the values in themeta data.

From the pair shown in Figure 3, we can see that the data is lightly imbalanced in most classes. Hence,

for all further analysis, the F1 Scoring metric will be used for model evaluation.

2.2 Classification Models

In order to address all of our hypothesis, we used classification models from sklearn. Parameters that

best explained the data was identified using Grid Search, 5-fold cross validation and F1 Score as the met-

ric. The classification models considered are as follows:

• Logistic Regression (LR)

• Logistic Regression (LR), with Standard Scaler

• Random Forest (RF)

• Random Forest (RF), with Standard Scaler

• K-Nearest Neighbors Classifier (KNN)

• K-Nearest Neighbors Classifier (KNN), with Standard Scaler

• Support Vector Machine Classifier (SVC)

• Support Vector Machine Classifier (SVC), with Standard Scaler

• Multi Layered Perceptron Classifier (MLP)

• Multi Layered Perceptron Classifier (MLP), with Standard Scaler

Thesemodels were trained on both unnormalized and normalized data. The parameter for each case that

resulted in the best mean F1 score were saved and used on the validation dataset.

The hyperparameters considered for each model (normal and standard scaled) is as follows:
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Figure 3: Pair Plot of values in the meta data. Plot is made smaller for ease of representation, but is of high resolu-

tion and can be zoom in for more details.

1. LR: penalty=[l1, l2, elasticnet, None], C=[0.1, 0.5, 1, 10, 50], solver=[liblinear,saga]

2. RF: n_estimators=[50, 100, 150], min_samples_split=[2, 4], max_features=[sqrt, llog2]

3. KNN: n_neighbors=[3, 5, 10, 15], weights=[uniform, distance]

4. SVC: C=[0.1, 0.5, 1, 10, 50], kernel=[linear, poly, rbf, sigmoid], degree=[3, 5, 10, 20],
decision_function_shape=[ovo, ovr], gamma=[auto, scale]

5. MLP: hidden_layer_sizes = [(100,), (50,), (50,10)], activation = [relu, linear], alpha = [1e-6,

1e-4, 1e-2], learning_rate = [constant, invscaling, adaptive]
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3 Results & Comparisons

The performance of the models on the training data, with the best parameter set returned is as shown

below:

Figure 4: F1 Scores of the top 20 Model, Parameter combinations returned by Grid Search CV.

From Figure 4, the best performing models on the dataset are Random Forest Models, followed by KNN

Classifiers and SVM Classifiers. For ease of representation, in all the subsequent results “_ND” indicates
that the data is trained on the patient-wise normalized data; “_SS” indicates that the whole data was

standard scaled before applying the model.

3.1 Logistic Regression

The top 5 model, tuned with parameters obtained using Grid Search are as follows:

Name C Regularization Solver F1 Accuracy

LR_ND 0.5 l1 liblinear 0.77 0.83

LR_SS 0.1 l2 liblinear 0.75 0.78

LR 50 l2 saga 0.75 0.79

LR 10 l2 saga 0.75 0.79

LR 10 None saga 0.75 0.79

Table 1: Top 5 performances of the Logistic Regression Classifier model, sorted based on validation F1 scores, for

different parameter values.

Interpretations based on the best model parameters:

1. The best model has a relatively low C value. As C is the inverse of regularization coefficient in

sklearn, this implies that the best model utilizes regularization to improve generalization.

2. The regularization used by the best model is l1 regularization. The second best model uses the

l2 regularization, but in order to achieve the same level of performance as the best model, it uses

stronger regularization.

3. The solver that gives the best F1 score is liblinear. It has been shown in (Fan et al., 2008) that

liblinear is a very good choice for smaller datasets, in practice.
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3.2 Random Forest

The top 5 model, tuned with parameters obtained using Grid Search are as follows:

Name Max Features Min Samples Split # Estimators F1 Accuracy

RF_ND sqrt 2 150 0.89 0.90

RF_ND sqrt 2 50 0.89 0.90

RF_ND sqrt 2 100 0.88 0.90

RF_ND sqrt 4 100 0.88 0.90

RF_ND sqrt 4 50 0.87 0.89

Table 2: Top 5 performances of the Random Forest Classifier model, sorted based on validation F1 scores, for

different parameter values.

Interpretations based on the best model parameters:

1. min_samples_split of 2 gives better accuracy than of 4. As this parameter determines the mini-

mumnumber of samples required to split an internal node, a smaller valuewould enable themodel

to fit the data more finely.

2. The best models seem to be robust to changes in the n_estimators because the top 3 models all

have different n_estimators. The n_estimators determines the number of trees in the forest,

and it was interesting to note that the model fits didn’t change considerably when the parameter

was changed. This results is corroborated by (Cutler et al., 2012) and it can be speculated that this

robustness arises as a result of bagging performed to reach a consensus.

3. The best models have the max_features parameter set to sqrt as opposed to log2. Taking into

consideration the number of features in our dataset, the value returned by sqrt is higher than that

returned by log2. This also indicates that when information from larger number of features (time

points, in our case) are used, it results in better F1 score and accuracy.

3.3 K-Nearest Neighbors

The top 5 model, tuned with parameters obtained using Grid Search are as follows:

Name Neighbors Weights F1 Accuracy

KNN 10 distance 0.84 0.81

KNN_SS 10 distance 0.84 0.81

KNN 15 distance 0.82 0.79

KNN_ND 3 distance 0.81 0.78

KNN_SS 5 distance 0.81 0.79

Table 3: Top 5 performances of the KNN Classifier model, sorted based on validation F1 scores, for different pa-

rameter values.

Interpretations based on the best model parameters:

1. The bestmodels have the n_neighbors parameter value of 10. When this is increased or decreased,

there is a small dip in the F1 score and accuracy. This implies that only the closest 10 neighbors are

relevant to the data point of interest, thereby giving us an intuition about the distribution of the

data points in our dataset.

2. All the top 5 models used the weights parameter of distance as opposed to uniform. This high-
lights that the relative distance between the data points is more informative than when compared

to using a uniform weight distribution, when making a prediction.
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3.4 Support Vector Machines

The top 5 model, tuned with parameters obtained using Grid Search are as follows:

Name C Decision Function Degree γ Kernel F1 Accuracy

SVC_SS 10 ovo 3 auto poly 0.84 0.85

SVC_SS 10 ovr 3 auto poly 0.84 0.85

SVC 10 ovo 3 scale poly 0.82 0.83

SVC_SS 10 ovo 3 scale poly 0.82 0.83

SVC_SS 10 ovr 3 scale poly 0.82 0.83

Table 4: Top 5 performances of the SVM Classifier model, sorted based on validation F1 scores, for different pa-

rameter values.

Interpretations based on the best model parameters:

1. The value of 10 for the C, inverse regularization parameter seemed to give raise to best predictions.

The next best values of C reported by grid search are 50, followed by 0.5 and 0.1. This implies

that the sweet spot for the regularization parameter is 10, and higher values would result in higher

variance and lower values would result in higher bias.

2. All the 5 top models used a degree of 3. This in conjunction to the kernel being set to poly gives

us an intuition that the best mapping from the actigraph space to the classification is a non-linear,

polynomial mapping of degree 3.

3. The best models were robust to the decision_function_shape used. This is intuitive as all the

models were trained on a binary-class classification task.

4. The parameter gamma is the inverse of the radius of influence of a single training sample. When large

values of gamma is used, the radius of influence becomes small and results in over-fitting. Similarly,

when small values of gamma is used, the radius of influence becomes large and results in under-

fitting. The value of auto as opposed to scale best fits the dataset and implies that it is not essential

to make gamma dependent on the variance of the dataset.

3.5 Multi-layered Perceptrons

The top 5 model, tuned with parameters obtained using Grid Search are as follows:

Name Activation α # Nodes LR Scheduler F1 Accuracy

MLP_ND relu 0.0001 (50, 10) invscaling 0.81 0.84

MLP_SS_ND relu 0.0001 (50, 10) adaptive 0.81 0.84

MLP_SS_ND relu 0.0001 (50, 10) invscaling 0.81 0.84

MLP_SS_ND relu 0.0001 (50, 10) constant 0.81 0.84

MLP_ND relu 0.0001 (50, 10) adaptive 0.81 0.84

Table 5: Top 5 performances of the MLP Classifier model, sorted based on validation F1 scores, for different pa-

rameter values.

Interpretations based on the best model parameters:

1. The best models all utilized the relu activation function as opposed to tanh. This in in conjunc-

tion with the recent trends in deep learning (Fukushima, 1980), (Nair and Hinton, 2010), (Agarap,

2018).

2. Lower value of alpha, coefficient of regularization, has been opted by all the best models.

3. All the bestmodels use a hidden_layer_sizes of (50, 10). This shows that themodel with two lay-

ers performs better thanwhen compared tomodels that have a single hidden layer. This potentially

ties to themodels’ ability to extractmore information from the dataset in the presence of additional

layers.
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4. The models seem to be robust to the choice of learning_rate scheduler used. However, from the

results, we see that invscaling and adaptive are better represented than constant, indicating
that dynamic adjustments to learning rates is more advantageous than static learning rates.

3.6 Model Selection

The top 15models and parameter combinations presented in Figure 4were subsequently used to address

all the proposed hypothesis. Across all models, when PCA was applied on the data prior to model fitting,

the performance dropped. Hence, PCA based dimensionality reduction was not used in all subsequent

analysis.

4 Results Visualization

4.1 Hypothesis 1

The model performance of Random Forest Classifiers and Logistic Regression Classifiers was obtained.

As observed in the previous section, the best model performance are as follows:

• Logistic Regression: F1 Score: 0.77; Accuracy: 0.83

• Random Forest: F1 Score: 0.89; Accuracy: 0.90

Figure 5: ROC Curve and Confusion Matrix (train, validation) for the best model; Hypothesis 1

As we can see above, the best Random Forest model provides a really good fit to the dataset and is able

to perform better, both in terms of accuracy and F1 score, than when compared to Logistic Regression.

4.2 Hypothesis 2

Since the data is arranged in a day-wise format across all participants, the age and gender information

for all participants was tiled and stacked with the actigraph dataset. This dataset comprising actigraph

information, age and gender data was used for analysis in this section.

When the age and gender data was included, both the F1 score and accuracy increased slightly. The best

model results are: F1 Score: 0.925926 and Accuracy: 0.935484. The ROC Curve and Confusion Matrix

of the best model is shown in Figure 6. From the confusion matrix we can see that the model is able to

correct some of the wrongly classified data points when the age and gender information is added.

Figure 6: ROC Curve and Confusion Matrix (train, validation) for the best model; Hypothesis 2
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4.3 Hypothesis 3

The same dataset generated for the last hypothesis was used here. The best model results are: F1 Score:

0.925926 and Accuracy: 0.935484. The ROC Curve and Confusion Matrix of the best model is shown in

Figure 6. The accuracies and F1 scores for males and females obtained from the model that best fit the

dataset is as follows:

• Male: Accuracy: 0.953846; F1 Score: 0.958904

• Female: Accuracy: 0.831325; F1: 0.758621

4.4 Hypothesis 4

A similar approach as in Hypothesis 2 was taken to generate a dataset that had information about the

level of depression in a patient. Both the MADRS Scores 1 and 2 were included in the dataset.

The accuracies and F1 scores for mild and severe depression obtained from the model that best fit the

dataset (same model as the previous subsection) is as follows:

• Mild Depression: Accuracy: 0.972727; F1: 0.938776

• Severe Depression: Accuracy: 0.822222; F1: 0.902439

Figure 7: ROC Curve and Confusion Matrix (train, validation) for RF model.

5 Discussion

This study aimed to determinewhich classificationmodel couldmost accurately predict depression based

on motor activity recorded from an Actigraph wearable wristband. Our study used motor Actigraph data

from (Garcia-Ceja et al., 2018).

In our analysis, we used 5 different classes of models, namely Logistic Regression, Random Forest, K-

Nearest Neighbors Classifier, Support Vector Machine Classifier, and Multi-Layer Perceptron Classifier.

We sought to determine which model parameters would enable the best predictor of depression from

motor activity. We utilized a dataset comprising 773 data points, with 340 belonging to the depressed

condition and the remaining samples serving as controls.

As the number of features (activity per minute) in our data was 1440, representing a high-dimensional

data space, we attempted to use Principal Component Analysis (PCA) to reduce the dimensionality of our

dataset and identify the most relevant features. However, we found that this approach did not signifi-

cantly improve our model’s performance and did not use PCA based dimensionality for our subsequent

analyses. This indicates that specific motor activity features are critical for distinguishing between in-

dividuals with depression and those without. Jointly considering the kernel results from SVC and the

results from PCA, we can see that the mapping between the actigraph space and the output space is non-

linear. Which could also explain why PCA, a linear dimensionality reduction technique did not result in

better classification accuracies.
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The best parameters for each model were identified using grid search, combined with a 5-fold cross val-

idation on the training sample. The models that best differentiated between the control and condition

groups are the Random Forest models, Support Vector Machine Classifier models and K-Nearest Neigh-

bors Classifier models, in the same order.

We found that the random forest model could accurately classify the samples’ condition status with a

high F1 score and accuracy. The superior performance of the random forest model can be attributed to

its ability to handle high-dimensional data by constructing a large number of decision trees and the use of

bagging to combine their results to make the final classification decision. This approach is advantageous

when dealing with complex data structures where traditional regression models may not be sufficient.

Our findings support the use of RF models as a powerful tool for classification tasks in mental health re-

search when the dataset is small and has a large number of features.

We also developed a logistic regression model to predict depression based on motor activity. We inves-

tigated the impact of regularization and solver algorithms on the model’s predictive performance. Our

findings indicate that logistic regression was robust to both the coefficient and type of regularization, i.e.,

L1 and L2 regularization, but L2 utilizes a larger regularization coefficient than L1 to achieve the same

level of performance. We compared two solver algorithms for logistic regression, liblinear and saga.
Our results indicate that on our small dataset liblinear performs better than saga. However, when the

data was not normalized or standard scaling was not used, saga performed better than liblinear. This
could be attributed to liblinear’s tendency to converge at a non-stationary point, leading to suboptimal

model performance. Our findings suggest that while logistic regression is a robust model for predicting

depression based on motor activity, it is outperformed by the RF model.

We further investigated the impact of adding age and sex data to our predictive models for depression

classification based onmotor activity. Our findings indicate that including age and sex data improved the

model’s classification performance. Additionally, we observed that ourmodels had higher accuracies and

F1 scores for males than females. This suggests that theremay be gender-based differences in the impact

of motor activity on depression. We also investigated the model performances in accurately predicting

mild and severe depression. We found that when control samples were included, the accuracy and F1

score of mild depression cases were higher than severe depression cases. This suggests that including

control samples may provide additional information that could aid in better differentiating betweenmild

and severe depression cases based on motor activity.

While our study provides valuable insights into using RF models for depression classification, several

limitationsmust be acknowledged. Ourdatasetwas relatively small, and future studieswith larger sample

sizes are required to confirm our findings. Furthermore, there are limitations to using motor activity as

the sole feature for depression classification. Our dataset does not account for the individual variability

in movement and fails to account for other symptoms of depression, such as one’s mood or cognitive

state. Additionally, we did not explore the potential impact of confounding variables on our results, such

as medication use or comorbid conditions. Future studies should address these limitations and further

refine our understanding of the role of motor activity in depression.
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