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Abstract

Polycystic Ovarian Syndrome (PCOS) is a disorder caused due to endocrine dysfunction, that

affects women of reproductive age. Although the aetiology of PCOS isn’t known, patients

diagnosed with PCOS are generally found to exhibit elevated levels of the androgen and

lower levels of progesterone. In order to understand the pathophysiology of PCOS, we have

explored PCOS gene expression data comprising 9 datasets from the NCBI GEO database.

We have used unsupervised linear dimensionality reduction techniques such as Principal

Component Analysis (PCA), Independent Component Analysis (ICA) & Non-negative Matrix

Factorization and non-linear dimensionality reduction techniques such as Variational Auto

Encoders (VAE) & Denoising Auto Encoders (DAE) to extract biologically important signals

from the data. The VAE network was trained using the binary cross-entropy loss func-

tion coupledwith a Kullback-Leibler divergence penalty, while the DAE networkwas trained

using a MSE cost function. Our model has identified 5 genes - FAM163A, FOLR2, S100A6,

AKR1A1 and MCL1, that correspond to the latent dimensions that maximally separate the

PCOS data points from the control data points. These genes were found to participate in key

pathways related to PCOS such as insulin secretion, vitamin and mineral absorption, insulin

resistance, androgen and prostaglandins productions. Additionally, we also worked on

understanding the ability of the different dimensionality reduction algorithms in identifying

key features in the biological data, their stability and the similarity in the features identified

by each algorithm across different latent dimensions.

Introduction

Most cells in a given organism contain the same set of genes, but only a select set of these

genes are expressed at any given time. This gene expression is a highly regulated process.

When cellular systems are perturbed, changes in the biological processes reflect on the

gene expression data.

Gene expression analysis involves studying the behavior and functioning of individual genes

in an organism, by analyzing their gene expression (mRNA) levels. The dynamic functional

view provided by gene expression analysis enables us to acquire a better understanding

of individual genes, gene networks and biological pathways. This in turn proves very

useful in understanding the pathophysiology of diseases, analyzing the effects of mutations,

evaluating the efficiency of drugs, and so on. However, due to the enormity of the gene
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expression data and the large number of parameters that need to be estimated in the

process, direct analysis of the data is both tedious and computationally intensive. Hence,

many gene expression analysis studies make use of dimensionality reductionmethods, such

as Principal Component Analysis (PCA) [1] [2], before analyzing the gene expression data.

However, deriving insights from the latent (transformed) space alone, is difficult due to the

limitations imposed by the transformation. Additionally, we need to decode the latent space

representation back to the original space in order to completely understand the biological

significance. Unsupervised neural network based approaches, such as autoencoders, can

help deal with these shortcomings, by performing both dimensionality reduction (encoding)

and decoding. Recent works such as [3] [4] [5] employ Denoising Autoencoders (DAEs),

while the works of [3] [6] [7] explore Variational Autoencoders (VAEs). Depending on the

algorithm used and the range of latent space dimensionalities explored, different kinds of

biological patterns can be captured [3].

Polycystic Ovarian Syndrome (PCOS) is an endocrine disorder that affects almost one-

tenth of women of reproductive age globally [8]. The exact cause of PCOS is still uncertain

[9]. Many prior works have analysed differential expressions of certain genes in samples

collected from different tissues of PCOS patients as well as non-PCOS controls, in order to

gain insights into thepathophysiologyof PCOS. Someof these includeovarian theca cells [10],

ovarian tissue cells [11], omental adipose tissue [12], granulosa cells [13], cumulus cells [14],

and endometrial tissue [15]. Many of these studies have employed PCA as a dimensionality

reduction technique to analyse the gene expression data.

In our study, we have focused on analyzing gene expression data of PCOS patients as well as

non-PCOS controls, in order to infer biological patterns associated with PCOS, by applying

unsupervised dimensionality reduction techniques, including Principal Component Analysis

(PCA), Independent Component Analysis (ICA), Non-negative Matrix Factorization (NMF),

Denoising Autoencoders (DAEs) and Variational Autoencoders (VAEs), across different

latent dimensional representations [3].

Materials and methods

Gene Expression Data Collection

All the gene expression data used in our study was obtained from NCBI GEO. [16] A total

of 9 datasets related to PCOS was available on GEO. The gene expression datasets and the

associated annotation files were accessed and parsed programmatically from the search

result.

The gene expression levels for each dataset was extracted from their respective SOFT files

and the mapping between the gene IDs used in the dataset and their Entrez Gene IDs

was extracted from their respective annotation files. The distribution of the genes (i.e.)

Normal/Control, PCOS or after drug application was extracted from the Sample Subset tab

of each dataset.
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GEO Sample ID # PCOS Samples # Control Samples

GDS1050 9 4

GDS1051 9 4

GDS2084 8 7

GDS3104 16 13

GDS3841 12 11

GDS4132 10 10

GDS4133 10 13

GDS4399 7 3

GDS4987 14 15

Table 1. Individual Datasets Summary

Data Pre-Processing

All genes that did not map to an Entrez ID were removed. In cases where multiple gene IDs

had the same Entrez ID, the average expression of the multiple genes was taken.

The gene expression levels were then normalized to the range [0, 1] using Min-Max Scaling.

Unique Entrez IDs across all the datasets was taken and the entries from the 9 datasets were

combined into a single dataset. As imputation across 24,981 columns was computationally

intensive, we only considered columns that had complete data.

Fig 1. Cell type distribution in the final combined dataset.

Exploratory Data Analysis

Once the mapping and consolidation of the dataset was done, an exploratory analysis of

the data using heterogeneous networks was carried out. The association data between the

nodes was taken fromMSigDB [17]. From the results below, we observe that most of our

genes in the final dataset comprise of genes related to the human immune system.
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Fig 2. Analysis of the metanodes and metaedges present in the heterogeneous network of

the PCOS data, on the left and right respectively.

Techniques Used for Unsupervised Dimensionality Reduction

Following the approach given by [3], we have employed linear as well as non-linear unsu-

pervised dimensionality reduction methods to analyze the PCOS gene expression data.

Linear dimensionality reduction techniques

• Principal Component Analysis (PCA): PCA identifies linear directions along which

the variance of the data is maximum. The directions are then arranged based on

the decreasing order of variance. The data is then projected onto the reduced set of

directions.

• Independent Component Analysis (ICA): The dimensionality reduction done by ICA is

very similar to that of PCA, but, it makes a key assumption that the latent dimensions

are mutually independent and non-Gaussian. It is like a rotation of PCA.

• Non-negative Matrix Factorization (NMF): NMF dimensionality reduction is used on

samples that have non-negative values. The coefficients in the linear combination

of the initial data are necessarily non-negative. Hence, the dimensions that don’t

contribute to the latent dimensions have a zero coefficient.

Non-linear dimensionality reduction techniques

Autoencoders are unsupervised deep neural networks, which comprise of three main parts:

an encoder that performs dimensionality reduction on the input data, one or more hidden

layer(s)which capture the latent or hidden representations, and a decoder that decodes

the latent dimensional representation back to the original dimension, as the output.

• Variational Autoencoders (VAE): VAEs are stochastic autoencoding frameworks. The

hidden layers in a VAE learn and take into account both the mean and the variance of

the data. The decoder then samples from this distribution generator (with variations)

to produce the output.

• Denoising Autoencoders (DAE): In a DAE, some random noise is deliberately added

to the input data, and the network is trained so as to remove the noise and capture

the relevant signals.
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Architecture of Auto-Encoders

The architecture of the Variational and Denoising Auto Encoders used is as follows:

Fig 3. Architecture of the Variational and Denoising Autoencoders used in our model on

the left and right respectively. [3]

Computational Resources

The analysis and implementation of linear dimensionality reduction algorithms (i.e.) PCA,

ICA and NMF, was performed on an Intel Core i5 CPU, 64-bit computer laptop. The analysis

and implementation of the non-linear dimensionality reduction algorithms (i.e.) Denoising

Autoencoders and Variational Autoencoders were performed on Google Colaboratory using

the Google GPUs as backend.

Results

PCA, ICA, NMF across Latent Space Dimensionalities

PCA, ICA and NMF were applied on the merged PCOS dataset, across a set of 27 latent

dimensionalities, ranging from 2 to 150.

Reconstruction Performance

In order to assess the ability of themodels to capture the fundamental features of the data in

the latent dimensions, we calculated the reconstruction cost of all the models. We use both

L2 loss and binary cross-entropy loss functions. In case of binary cross-entropy, to
ensure that input values were integers, the data was typecasted to int. The reconstruction
performance of the algorithms are as follows:
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Fig 4. Cost - binary cross-entropy loss across different algorithm and different latent

dimensions.

Fig 5. Cost - L2 loss across different algorithm and different latent dimensions.

From the figures above, we can see that as the latent dimensions are increased, the L2 loss

between the input and the reconstructed output decreases. However, we also see that the

binary cross-entropy cost is low at both extremes and peaks at an intermediate latent

dimension. This variation could be potentially due to the typecasting performed. Hence,

we are using the L2 loss alone.

From the L2 reconstruction cost, we can see that the model is able to capture the biological

signals from the data and the loss decreases as the number of latent dimension increases.

Strongly Associated Dimensions

The strongly associated components are the components that led to a sudden increase in the

features captured from the data by the algorithm. In order to identify the strongly associated

dimensions, we have used the correlation between the input data and the reconstructed

data from the latent dimensions. [3]

The correlation of the input and the reconstructed output is as follows:
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Fig 6. Correlation between the input and the reconstructed output across different

algorithm and different latent dimensions.

The correlation gain plots across different algorithms is as follows:

Fig 7. Correlation gain observed across different algorithms and different latent

dimensions.

From the images above, we can see that the latent dimension 3 has the largest correlation

peak indicating that the addition of the dimension has captured a large amount of biological

data when compared to the immediate prior dimensions. Similar peaks are observed at

dimensions 10, 25, 60, 78 and 125. The combination of these dimensions make up the

strongly associated dimensions.

DAE, VAE across Latent Space Dimensionalities

DAE and VAE models were trained on the merged PCOS dataset, across the 27 latent dimen-

sions, ranging from 2 to 150.

Reconstruction Performance

The MSE cost function was used in case of DAE, while the binary cross-entropy loss

function coupled with Kullback-Leibler divergence penalty was used in case of VAE. The

reconstruction performance of the Variational Autoencoders are as follows:
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Fig 8. Reconstruction Performance of the autoencoder models - VAE and DAE, to the left

and right respectively.

Strongly Associated Dimensions

The strongly associated dimension analysis using correlation is as follows:

Fig 9. Correlation between the input and the reconstructed output in the auto-encoder

models.

The correlation gain for the two models is as follows:

Fig 10. Correlation gain observed in the autoencoder models, across different latent

dimensions.

Although the number of peaks in the correlation gain is higher in the autoencoder models,

the latent dimension 3 still contributes to the largest peak as observed before.
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Consolidated Correlation Analysis

Fig 11. Consolidated correlation analysis across different algorithms.

Stability and Correlation Analysis

To analyse the stability of the 5 different models (PCA, ICA, NMF, VAE, DAE), as well as

the correlation between the models within and across different latent dimensionalities,

Singular Value Canonical Correlation Analysis (SVCCA) scores were calculated from the

model weights [3] [18].

Fig 12. Stability (Mean SVCCA scores) across latent dimensionalities

As observed from the above figure, for PCA and ICA, the SVCCA scores between the weights

are very high, across the different latent dimensions explored. This is because PCA is a
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deterministic algorithm, and even if we increase the number of latent space dimensions,

only the solution with the maximum variance is considered. Since ICA is like a rotation

of PCA, the results of ICA are also comparable with those of PCA. However, there is a very

low correlation between latent dimensions 78 and 150 for PCA. For NMF as well as VAE,

the SVCCA scores are high across all the latent dimensions. For DAE, we can see that the

SVCCA scores have a lot of variation (ranging from 0.6 to 1.0) across the different latent

dimensionalities. This is indicative of the relatively lower stability of the DAE model due to

the random initializations.

Fig 13. Stability (Mean SVCCA scores) across algorithms

From the above plot, we observe that the SVCCA scores for PCA with ICA (and vice-versa)

are very high across latent dimensions. The SVCCA scores for VAE and NMF with PCA

and ICA increase sharply initially, peak at latent dimension 3, drop slightly thereafter, but

subsequently remain quite high. This result is in agreement with what has been observed in

the earlier section. The SVCCA scores for DAE with other models increase initially and then

the scores drop for higher dimensions. Also, the SVCCA scores of DAE with other models is

relatively lower (in the 0.6-0.8 range) as compared to the other model combinations (in the

0.8 - 1.0 range). This is again indicative of the relatively lower stability of the DAE model.
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T-tests Analysis

Tailed T-tests were performed by comparing the weights for PCOS vs Control samples to

identify the gene ID, latent dimensionality and model combination which gives maximum

separation between the two sets.

Model Gene ID Latent − log10(P ) Tissues most expressed in [16]

Dimension

PCA 148753 30 5.665 Testis, Adrenal, Gall bladder

ICA 2350 40 4.677 Placenta, Gall bladder, Urinary bladder

NMF 6277 60 2.450 Colon, Lung, Stomach

DAE 10327 2 1.747 Kidney, Duodenum, Small intestine

VAE 4170 5 1.879 Bone marrow, Gall bladder, Appendix

Table 2. Best Separation Between PCOS and Control Samples Across Algorithms and

Latent Dimensions

Fig 14. T-test results for PCOS vs Control across algorithms

From the above table and figure, we can observe that PCOS vs Control samples were best

separated by PCA, with respect to gene ID 148753, in latent dimension 30, with over-

expression of the gene in the PCOS samples. This gene ID corresponds to Family with

sequence similarity 163 member A [16]. This gene has a biased expression in human

tissues such as testis, adrenal and gall bladder.

PCOS vs Control samples were also well-separated by ICA, with respect to gene ID 2350, in

latent dimension 40. This gene ID corresponds to folate receptor beta [16]. This gene has a

broad expression in human tissues such as placenta, gall bladder and urinary bladder.

For the PCA, ICA and NMF models, we observe a general increase in the− log10(P ) values
(with fluctuations) as the number of latent dimensions increase. However, for the DAE and

VAE, we can see an overall decreasing trend in the− log10(P ) values as the number of latent

dimensions increase. This indicates that PCA, ICA and NMF are able to better distinguish

between PCOS and Control samples at relatively higher latent dimensionalities, but DAE

and VAE are able to capture this difference better at lower latent dimensionalities.
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Discussion

From the results obtained above, it is interesting to note that our model is able to identify

the following genes - FAM163A, FOLR2, S100A6, AKR1A1 and MCL1, that correspond to

the latent dimensions that maximally separate the PCOS data points from the control data

points. Out of these 5 genes, we got literature evidence for the role of the following genes -

FOLR2, S100A6 in PCOS.

The gene FOLR2 (Gene ID 2350), is known to code for the protein - folate receptor beta.

The folate receptor beta protein is known to play a key role in the pathways associated with

vitamin digestion and absorption. [19], [20], [21] Perturbations of this pathway, results in

low folate production, affecting the utilization of Vitamin B12 and other B vitamins. This

in turn affects the extent of the maturation egg released during ovulation. Incomplete

maturation, prevents the ovaries from releasing adequate amount of progesterone that is

essential in maintaining normal menstrual cycle in women.

Additionally, vitamin B12 deficiency is also associated with insulin resistance and obesity.

[22], [23], [24]. The high levels of insulin in the blood results in enhanced production of

androgen by the theca cells. This starts a cascade of actions affecting the progesterone

levels, extent of maturation of the eggs. [25], [26], [27]. This role of folic acid in insulin

resistance and PCOS has been further ratified here [28].

The gene S100A6 (Gene ID 6277) is also known to code for the S100 Calciumbinding protein.

This protein is known to play a key role in the stimulation of calcium dependent insulin

release and prolactin secretion. [19], [20], [21] They are also known to participate in the

estrous cycle. [29]

Conclusion

We analysed gene expression data of PCOS patients as well as non-PCOS controls using unsu-

pervised dimensionality reduction techniques such as PCA, ICA, NMF, DAE and VAE, across

a range of different latent dimensions. We found that the different models in different latent

dimensional representations were able to extract interesting biological patterns about the

pathophysiology of PCOS, such as the folate receptor gene and the S100 Calcium binding

protein. Hence, we concluded that, in order to derive new and meaningful insights into bio-

logical data from gene expression analysis, it is essential to explore different dimensionality

reduction algorithms as well as latent dimensions.

Challenges

There were very few PCOS gene expression datasets available on GEO, with each dataset

comprising only about 10-30 samples. Moreover, many gene IDs in these datasets did not

have a mapping to an Entrez ID and hence had to be discarded. Hence, the final combined

dataset which we obtained after data pre-processing was rather small. This limited our

analyses in terms of the number of latent dimensional representations thatwe could explore.

FutureWork

In this project, we used only one kind of architecture for the autoencoder models (DAE,

VAE). In future, different architectures or other optimizations for the DAE, VAE models

could be explored.
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