Ab-initio Synthesis of Amino acids

N Sowmya Manojna | Sahana Gangadharan BE17B007 | BE17B038

Under the Guidance of
Prof. Karthik Raman
IBSE, RBC-DSAI, IIT Madras

Miller-Urey experiment

Figure 1: Metadynamic based analysis of the formation of formamide (Saitta and Saija (2014))

Miller-Urey experiment

Figure 1: Metadynamic based analysis of the formation of formamide (Saitta and Saija (2014))

Miller-Urey experiment

Figure 1: Metadynamic based analysis of the formation of formamide (Saitta and Saija (2014))

Miller-Urey experiment

Figure 1: Metadynamic based analysis of the formation of formamide (Saitta and Saija (2014))

Thermodynamic data collection

- Reaction Mechanism Generator (RMG)
- Segregated in the form of libraries
- NASA and Group Additivity formats
- $C_{n}^{o}(T), H^{o}(T)$ and $S^{o}(T)$, for two different temperature regimes were available.
- Highcharts of the same and Gibbs free energy

Thermodynamic data collection

- Reaction Mechanism Generator (RMG)
- Segregated in the form of libraries
- NASA and Group Additivity formats
- $C_{p}^{o}(T), H^{o}(T)$ and $S^{o}(T)$, for two different temperature regimes were available.
- Highcharts of the same and Gibbs free energy

Thermodynamic data collection

- Reaction Mechanism Generator (RMG)
- Segregated in the form of libraries
- NASA and Group Additivity formats
$C_{p}^{o}(T), H^{o}(T)$ and $S^{o}(T)$, for two different temperature regimes were available.
- Highcharts of the same and Gibbs free energy

Thermodynamic data collection

- Reaction Mechanism Generator (RMG)
- Segregated in the form of libraries
- NASA and Group Additivity formats
- $C_{p}^{o}(T), H^{o}(T)$ and $S^{o}(T)$, for two different temperature regimes were available.
- Highcharts of the same and Gibbs free energy

Thermodynamic data collection

- Reaction Mechanism Generator (RMG)
- Segregated in the form of libraries
- NASA and Group Additivity formats
- $C_{p}^{o}(T), H^{o}(T)$ and $S^{o}(T)$, for two different temperature regimes were available.
- Highcharts of the same and Gibbs free energy

Initial Network Setup - Representation

class Atom()

Attributes:
name

Member functions:

- __init__()

Initial Network Setup - Representation

class Atom()

Attributes:
name
number
element

Member functions:
> __init_()
get_max_valency ()
current_valency ()

Initial Network Setup - Representation

class Atom()

Attributes:
name
number
element

Member functions:

- __init__()
current_valency ()

Initial Network Setup - Representation

class Atom()

Attributes:

- _name
- _number
- _element

Member functions:

- __init__()

```
    current_valency()
```


Initial Network Setup - Representation

class Atom()

Attributes:

- _name
- _number
- _element
- _valency

Member functions:
> __init__()
get_max_valency()
current_valency ()
get_total_valency()
\rightarrow repr()

Initial Network Setup - Representation

class Atom()

Attributes:

- _name
- _number
- _element
- _valency

Member functions:

- __init__()
- get_max_valency()
current_valency ()
get_total_valency()

Initial Network Setup - Representation

class Atom()

Attributes:

- _name
- _number
- _element
- _valency

Member functions:

- __init__()
- get_max_valency()
- current_valency()

```
> get_total_valency()
```


Initial Network Setup - Representation

class Atom()

Attributes:

- _name
- _number
- _element
- _valency

Member functions:

- __init__()
- get_max_valency()
- current_valency()
- get_total_valency()

Initial Network Setup - Representation

class Atom()

Attributes:

- _name
- _number
- _element
- _valency

Member functions:

- __init__()
- get_max_valency()
- current_valency()
- get_total_valency()
- repr()

Initial Network Setup

- $H: C: O: N$ in ratio of 4:1:1:1, with a scaling factor of 8 .
\rightarrow Initial edges resulting in the formation of $2 \mathrm{CH}_{4}$, $2 \mathrm{NH}_{3}$ and $1 \mathrm{H}_{2} \mathrm{O}$ molecules

Graph G with initial compounds

Figure 2: Initial network setup. Methane, Ammonia and Water are formed

Initial Network Setup

- $H: C: O: N$ in ratio of 4:1:1:1, with a scaling factor of 8 .
- Initial edges resulting in the formation of $2 \mathrm{CH}_{4}$, $2 \mathrm{NH}_{3}$ and $1 \mathrm{H}_{2} \mathrm{O}$ molecules

Graph G with initial compounds

Figure 2: Initial network setup. Methane, Ammonia and Water are formed

What is the input for our model?

- Unknown - thermodynamic data.
- Network H - as a database that stores ΔG values for intermediates. - input_G() - incorporates ΔG from H or takes input from user.

What is the input for our model?

- Unknown - thermodynamic data.
- Network H-as a database that stores ΔG values for intermediates.
> input_G() - incorporates ΔG from H or takes input from user.

What is the input for our model?

- Unknown - thermodynamic data.
- Network H-as a database that stores ΔG values for intermediates.
- input_G() - incorporates ΔG from H or takes input from user.

Random Graph Generation

- Generates connected
components
Maximum number of edges - get_number_bonds()
- Size of component formed -
(<2*max_size)

Random Graph Generation

- Generates connected components
- Maximum number of edges
- get_number_bonds()

Figure 3: Maximum number of bonds that can be formed across iterations

Random Graph Generation

- Generates connected components
- Maximum number of edges
- get_number_bonds()
- Size of component formed ($<2 *$ max_size)

Figure 3: Maximum number of bonds that can be formed across iterations

Ensuring electrical neutrality

- Case 1: Atom and neighboring atoms don't have satisfied valency

Case 2: All neighboring

atoms have satisfied
valency

Ensuring electrical neutrality

- Case 1: Atom and neighboring atoms don't have satisfied valency
Case 2: All neighboring atoms have satisfied valency

Figure 4: Neighboring atom doesn't

Ensuring electrical neutrality

- Case 1: Atom and neighboring atoms don't have satisfied valency
- Case 2: All neighboring atoms have satisfied valency

Figure 4: Neighboring atom doesn't

Ensuring electrical neutrality

- Case 1: Atom and neighboring atoms don't have satisfied valency
- Case 2: All neighboring atoms have satisfied valency

Figure 4: Neighboring atom doesn't have satisfied valency

Figure 5: All neighboring atom have satisfied valency

Simulated Annealing

- Minimize sum total Gibbs free energy of network
> Probability p :

- Enhanced sampling: rearrange_connected_components - random.uniform $(0.0,1.0)<0.1$: Complete reshuffling - $0.1<r a n d o m . u n i f o r m(0.0,1.0)<0.6:$ Two reshufflings - $0.6<$ random.uniform $(0.0,1.0)<0.8$: One reshuffling
- random.uniform $(0.0,1.0)>0.8$: No reshuffling

Simulated Annealing

- Minimize sum total Gibbs free energy of network
- Probability p :

$$
\begin{gathered}
p=\exp \left(\frac{-\left(\Delta G_{\text {tot }, \text { current }}^{\circ}-\Delta G_{\text {tot }, \text { best }}^{\circ}\right)}{T}\right) \\
T=(0.995)^{i \text { teration }} T_{\text {intial }}
\end{gathered}
$$

- Enhanced sampling: rearrange_connected_components
- random.uniform $(0.0,1.0)<0.1$: Complete reshuffling
- $0.1<r a n d o m . u n i f o r m(0.0,1.0)<0.6:$ Two reshufflings
- $0.6<$ random. uniform $(0.0,1.0)<0.8$: One reshuffling
- random.uniform $(0.0,1.0)>0.8$: No reshuffling

Simulated Annealing

- Minimize sum total Gibbs free energy of network
- Probability p :

$$
\begin{gathered}
p=\exp \left(\frac{-\left(\Delta G_{\text {tot }, \text { current }}^{\circ}-\Delta G_{\text {tot }, \text { best }}^{\circ}\right)}{T}\right) \\
T=(0.995)^{\text {iteration }} T_{\text {intial }}
\end{gathered}
$$

- Enhanced sampling: rearrange_connected_components
- random.uniform(0.0, 1.0) < 0.1: Complete reshuffling
- 0.1 < random.uniform(0.0, 1.0) < 0.6: Two reshufflings
- $0.6<$ random.uniform ($0.0,1.0$) < 0.8: One reshuffling
- random.uniform(0.0, 1.0) > 0.8: No reshuffling

Reaction simulation

Mediated by Hydrogen atoms

Reaction simulation

Mediated by Hydrogen atoms

Figure 6: Reactants: Formaldehyde and Hydrogen Cyanide

Reaction simulation

Mediated by Hydrogen atoms

Figure 6: Reactants: Formaldehyde and Hydrogen Cyanide

Figure 7: Products: Glyoxylonitrile and Iminoacetaldehyde

Strecker Reaction

Compounds were scanned for

- Aldehydes
- Ketones
- Amines

Figure 8: Strecker amino acid synthesis

Glycine synthesis

Figure 9: Initial reactant - Formaldehyde

Glycine synthesis

Figure 9: Initial reactant - Formaldehyde

Glycine synthesis

Figure 9: Initial reactant - Formaldehyde

Figure 11: Addition of $H C N$ - Aminoacetonitrile

Glycine synthesis

Figure 9: Initial reactant - Formaldehyde

Figure 10: Addition of ammonia - Aminomethanol

Figure 11: Addition of $H C N$ - Aminoacetonitrile

Figure 12: Acid hydrolysis - Glycine

Alanine synthesis

Figure 13: Initial reactant - Acetaldehyde

Alanine synthesis

Figure 13: Initial reactant - Acetaldehyde

Figure 14: Addition of ammonia - Ethylamine

Alanine synthesis

Figure 13: Initial reactant - Acetaldehyde

Figure 14: Addition of ammonia - Ethylamine

Figure 15: Addition of $H C N$: 2-Aminopropanenitrile

Alanine synthesis

Figure 13: Initial reactant - Acetaldehyde

Figure 14: Addition of ammonia - Ethylamine

Figure 15: Addition of $H C N$: 2-Aminopropanenitrile

Figure 16: Acid hydrolysis - Alanine

Results

- Key intermediates:
- Glycine: Formaldehyde, Aminoacetonitrile and Hydrogen Cyanide
- Alanine: Acetaldehyde, Ethylamine and Hydrogen Cyanide

- Gibbs free energy across reaction coordinates

Results

- Key intermediates:
- Glycine: Formaldehyde, Aminoacetonitrile and Hydrogen Cyanide
- Alanine: Acetaldehyde, Ethylamine and Hydrogen Cyanide
- Gibbs free energy across reaction coordinates

Figure 17: Gibbs free energy across reaction coordinates for Glycine synthesis

Figure 18: Gibbs free energy across reaction coordinates for Alanine synthesis

Challenges

- Electrically charged compounds
- Unavailability of Gibbs free energy data
- We overcame by introducing function - get_neutral_compound()
- Computationally expensive
- Reduced number of simulations of Lewis Acid-Base reaction.

Challenges

- Electrically charged compounds
- Unavailability of Gibbs free energy data
- We overcame by introducing function - get_neutral_compound()
- Computationally expensive
- Reduced number of simulations of Lewis Acid-Base reaction.

Thank You!

Figure 19: Stanley L. Miller overlooking a spark discharge apparatus 1994. (©Roger Ressmeyer/CORBIS)

