Introd	uction
0	

Methods & Algorithm

Results

Challenges

(日)

Acknowledgement O

Ab-initio Synthesis of Amino acids

N Sowmya Manojna | Sahana Gangadharan BE17B007 | BE17B038

Under the Guidance of Prof. Karthik Raman IBSE, RBC-DSAI, IIT Madras

Prebiotic earth - CH₄, NH₃, H₂O, and H₂

- Track formation of Amino acids
- Important intermediates!
- Strecker's amino acid synthesis

▲ロ▶▲掃▶▲ヨ▶▲ヨ▶ ヨーのQ@

- Prebiotic earth CH₄, NH₃, H₂O, and H₂
- Track formation of Amino acids
- Important intermediates!
- Strecker's amino acid synthesis

▲ロ▶▲掃▶▲ヨ▶▲ヨ▶ ヨーのQ@

- Prebiotic earth CH₄, NH₃, H₂O, and H₂
- Track formation of Amino acids
- Important intermediates!
- Strecker's amino acid synthesis

▲ロ▶▲掃▶▲ヨ▶▲ヨ▶ ヨーのQ@

- Prebiotic earth CH₄, NH₃, H₂O, and H₂
- Track formation of Amino acids
- Important intermediates!
- Strecker's amino acid synthesis

・ロト・西ト・西ト・日・ 日・ 今日・

Introduction	Methods & Algorithm	Results	Challenges	Acknowledgement	
O	•••••••	000	O	O	
Thermod	Thermodynamic data collection				

Reaction Mechanism Generator (RMG)

- Segregated in the form of libraries
- NASA and Group Additivity formats
- ▶ $C_p^o(T)$, $H^o(T)$ and $S^o(T)$, for two different temperature regimes were available.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Reaction Mechanism Generator (RMG)

Segregated in the form of libraries

- NASA and Group Additivity formats
- ▶ $C_p^o(T)$, $H^o(T)$ and $S^o(T)$, for two different temperature regimes were available.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- Reaction Mechanism Generator (RMG)
- Segregated in the form of libraries
- NASA and Group Additivity formats
- ▶ $C_p^o(T)$, $H^o(T)$ and $S^o(T)$, for two different temperature regimes were available.

- Reaction Mechanism Generator (RMG)
- Segregated in the form of libraries
- NASA and Group Additivity formats
- $C_p^o(T)$, $H^o(T)$ and $S^o(T)$, for two different temperature regimes were available.

- Reaction Mechanism Generator (RMG)
- Segregated in the form of libraries
- NASA and Group Additivity formats
- $C_p^o(T)$, $H^o(T)$ and $S^o(T)$, for two different temperature regimes were available.

 Introduction
 Methods & Algorithm
 Results
 Challenges
 Acknowledgement

 •••••••••••
 ••••••••
 ••••••
 •••••
 •••••

 Initial Network Setup
 - Representation

class Atom()

Attributes:

- _name
- _number
- _element
- valency

Member functions:

- __init__()
- get_max_valency()
- current_valency()
- get_total_valency()

▲ロ▶▲掃▶▲ヨ▶▲ヨ▶ ヨーのQ@

class Atom()

Attributes:

- _number
- _element
- valency

Member functions:

- __init__()
- get_max_valency()
- current_valency()
- get_total_valency()

▲ロ▶▲掃▶▲ヨ▶▲ヨ▶ ヨーのQ@

class Atom()

Attributes:

- _name
- _number
- _element
- valency

Member functions:

- __init__()
- get_max_valency()
- current_valency()
- get_total_valency()

▲ロ▶▲掃▶▲ヨ▶▲ヨ▶ ヨーのQ@

class Atom()

Attributes:

- _name
- _number
- _element
- _valency

Member functions:

- __init__()
- get_max_valency()
- current_valency()
- get_total_valency()

▲ロ▶▲掃▶▲ヨ▶▲ヨ▶ ヨーのQ@

class Atom()

Attributes:

- _name
- _number
- _element
- _valency

Member functions:

- __init__()
- get_max_valency()
- current_valency()
- get_total_valency()

▲ロ▶▲掃▶▲ヨ▶▲ヨ▶ ヨーのQ@

class Atom()

Attributes:

- _name
- _number
- _element
- _valency

Member functions:

- __init__()
- get_max_valency()
- current_valency()
- get_total_valency()

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

class Atom()

Attributes:

- _name
- _number
- _element
- _valency

Member functions:

- __init__()
- get_max_valency()
- current_valency()
- get_total_valency()

▲ロ▶▲掃▶▲ヨ▶▲ヨ▶ ヨーのQ@

class Atom()

Attributes:

- _name
- _number
- _element
- _valency

Member functions:

- __init__()
- get_max_valency()
- current_valency()
- get_total_valency()

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

class Atom()

Attributes:

- _name
- _number
- _element
- _valency

Member functions:

- __init__()
- get_max_valency()
- current_valency()
- get_total_valency()

▲ロ▶▲掃▶▲ヨ▶▲ヨ▶ ヨーのQ@

- H: C: O: N in ratio of 4:1:1:1, with a scaling factor of 8.
- Initial edges resulting in the formation of 2 CH₄, 2 NH₃ and 1 H₂O molecules

Figure 2: Initial network setup. Methane, Ammonia and Water are formed

- H: C: O: N in ratio of 4:1:1:1, with a scaling factor of 8.
- Initial edges resulting in the formation of 2 CH₄, 2 NH₃ and 1 H₂O molecules

Figure 2: Initial network setup. Methane, Ammonia and Water are formed

イロト イポト イヨト

3

Unknown - thermodynamic data.

 \blacktriangleright Network H - as a database that stores ΔG values for intermediates.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

▶ input_G() - incorporates ΔG from H or takes input from user.

- Unknown thermodynamic data.
- Network H as a database that stores ΔG values for intermediates.

▲ロ▶▲掃▶▲ヨ▶▲ヨ▶ ヨーのQ@

▶ input_G() - incorporates ΔG from H or takes input from user.

- Unknown thermodynamic data.
- Network H as a database that stores ΔG values for intermediates.

▲ロ▶▲掃▶▲ヨ▶▲ヨ▶ ヨーのQ@

• input_G() - incorporates ΔG from H or takes input from user.

Introduction	Methods & Algorithm	Results	Challenges	Acknowledgement	
O		000	O	O	
Random Graph Generation					

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Generates connected components

Maximum number of edges - get_number_bonds()

Size of component formed -(< 2 * max_size)</p>

- Maximum number of edges
 get_number_bonds()
- Size of component formed -(< 2 * max_size)</p>

Figure 3: Maximum number of bonds that can be formed across iterations

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Generates connected components
- Maximum number of edges
 get_number_bonds()
- Size of component formed -(< 2 * max_size)</p>

Figure 3: Maximum number of bonds that can be formed across iterations

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Introduction	Methods & Algorithm	Results	Challenges	Acknowledgement
O	000000000	000	O	O
Ensuring e	lectrical neutra	lity		

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Case 1: Atom and neighboring atoms don't have satisfied valency
- Case 2: All neighboring atoms have satisfied valency

- Case 1: Atom and neighboring atoms don't have satisfied valency
- Case 2: All neighboring atoms have satisfied valency

- Case 1: Atom and neighboring atoms don't have satisfied valency
- Case 2: All neighboring atoms have satisfied valency

Figure 4: Neighboring atom doesn't have satisfied valency

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Minimize sum total Gibbs free energy of network

Probability p:

$$p = \exp\left(\frac{-(\Delta G^{\circ}_{tot,current} - \Delta G^{\circ}_{tot,best})}{T}\right)$$
$$T = (0.995)^{iteration} T_{intial}$$

Enhanced sampling: rearrange_connected_components

- random.uniform(0.0, 1.0) < 0.1: Complete reshuffling
- 0.1 < random.uniform(0.0, 1.0) < 0.6: Two reshufflings
- 0.6 < random.uniform(0.0, 1.0) < 0.8: One reshuffling
- random.uniform(0.0, 1.0) > 0.8: No reshuffling

- Minimize sum total Gibbs free energy of network
- Probability *p*:

$$p = \exp\left(\frac{-(\Delta G_{tot,current}^{\circ} - \Delta G_{tot,best}^{\circ})}{T}\right)$$
$$T = (0.995)^{iteration} T_{intial}$$

Enhanced sampling: rearrange_connected_components

- random.uniform(0.0, 1.0) < 0.1: Complete reshuffling
- 0.1 < random.uniform(0.0, 1.0) < 0.6: Two reshufflings
- 0.6 < random.uniform(0.0, 1.0) < 0.8: One reshuffling
- random.uniform(0.0, 1.0) > 0.8: No reshuffling

- Minimize sum total Gibbs free energy of network
- Probability *p*:

$$p = \exp\left(\frac{-(\Delta G^{\circ}_{tot,current} - \Delta G^{\circ}_{tot,best})}{T}\right)$$
$$T = (0.995)^{iteration} T_{intial}$$

Enhanced sampling: rearrange_connected_components

- random.uniform(0.0, 1.0) < 0.1: Complete reshuffling
- 0.1 < random.uniform(0.0, 1.0) < 0.6: Two reshufflings
- 0.6 < random.uniform(0.0, 1.0) < 0.8: One reshuffling
- random.uniform(0.0, 1.0) > 0.8: No reshuffling

Introduction	Methods & Algorithm	Results	Challenges	Acknowledgement
O	○○○○○○○●○	000	O	O
Reaction	simulation			

Mediated by Hydrogen atoms

Introduction	Methods & Algorithm	Results	Challenges	Acknowledgement
O	00000000	000	O	O
Reaction s	imulation			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Mediated by Hydrogen atoms

Figure 6: Reactants: Formaldehyde and Hydrogen Cyanide

Introduction	Methods & Algorithm	Results	Challenges	Acknowledgement
O		000	O	O
Reaction	simulation			

Mediated by Hydrogen atoms

Figure 6: Reactants: Formaldehyde and Hydrogen Cyanide

Figure 7: Products: Glyoxylonitrile and Iminoacetaldehyde

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Introduction	Methods & Algorithm	Results	Challenges	Acknowledgement
O	○○○○○○○●	000	O	O
Strecker	Reaction			

Compounds were scanned for

- Aldehydes
- Ketones
- Amines

Figure 8: Strecker amino acid synthesis

うして 山口 マイビット ビット ひゃく

Introduction	Methods & Algorithm	Results	Challenges	Acknowledgement
O	೦೦೦೦೦೦೦೦	•00	O	O
Glycine s	ynthesis			

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Figure 9: Initial reactant - Formaldehyde

Introduction	Methods & Algorithm	Results	Challenges	Acknowledgement
O	00000000	•00	O	O
Glycine sy	nthesis			

Figure 9: Initial reactant - Formaldehyde

Figure 10: Addition of ammonia - Aminomethanol

Figure 9: Initial reactant - Formaldehyde

Figure 11: Addition of HCN - Aminoacetonitrile

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Figure 10: Addition of ammonia - Aminomethanol

Figure 9: Initial reactant - Formaldehyde

Figure 11: Addition of HCN - Aminoacetonitrile

Figure 10: Addition of ammonia - Aminomethanol

Introduction	Methods & Algorithm	Results	Challenges	Acknowledgement
O	00000000	○●○	O	O
Alanine sy	vnthesis			

Figure 13: Initial reactant - Acetaldehyde

Introduction	Methods & Algorithm	Results	Challenges	Acknowledgement
O	00000000	○●○	O	O
Alanine sy	nthesis			

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Figure 13: Initial reactant - Acetaldehyde

Figure 14: Addition of ammonia - Ethylamine

Figure 13: Initial reactant - Acetaldehyde

Figure 15: Addition of HCN: 2-Aminopropanenitrile

▲ロト ▲舂 ト ▲ 陸 ト ▲ 陸 ト →

æ

Figure 14: Addition of ammonia - Ethylamine

Figure 15: Addition of HCN: 2-Aminopropanenitrile

Figure 14: Addition of ammonia - Ethylamine

Figure 16: Acid hydrolysis - Alanine

ヘロト 人間 ト 人造 ト 人造 トー

æ

Introduction	Methods & Algorithm	Results	Challenges	Acknowledgement
O	000000000	○○●	O	O
Results				

- Key intermediates:
 - Glycine: Formaldehyde, Aminoacetonitrile and Hydrogen Cyanide

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

• Alanine: Acetaldehyde, Ethylamine and Hydrogen Cyanide

Gibbs free energy across reaction coordinates

Introduction	Methods & Algorithm	Results	Challenges	Acknowledgement
O	000000000	○○●	O	O
Results				

- Key intermediates:
 - Glycine: Formaldehyde, Aminoacetonitrile and Hydrogen Cyanide
 - Alanine: Acetaldehyde, Ethylamine and Hydrogen Cyanide
- Gibbs free energy across reaction coordinates

Figure 17: Gibbs free energy across reaction coordinates for Glycine synthesis

Figure 18: Gibbs free energy across reaction coordinates for Alanine synthesis

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Introduction	Methods & Algorithm	Results	Challenges	Acknowledgement
O	00000000	000	•	O
Challenges	;			

Electrically charged compounds

- Unavailability of Gibbs free energy data
- We overcame by introducing function get_neutral_compound()

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Computationally expensive

• Reduced number of simulations of Lewis Acid-Base reaction.

Introduction	Methods & Algorithm	Results	Challenges	Acknowledgement
O	00000000	000	•	O
Challenges				

- Electrically charged compounds
 - Unavailability of Gibbs free energy data
 - We overcame by introducing function get_neutral_compound()

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

- Computationally expensive
 - Reduced number of simulations of Lewis Acid-Base reaction.

Introduction	Methods & Algorithm	Results	Challenges	Acknowledgement
O	00000000	000	O	•

Thank You!

Figure 19: Stanley L. Miller overlooking a spark discharge apparatus 1994. (@Roger Ressmeyer/CORBIS)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの