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Figure 1: Metadynamic based analysis of the formation of formamide (Saitta
and Saija (2014))
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> NASA and Group Additivity formats

> Cp(T), H°(T) and S°(T'), for two different temperature regimes
were available.
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Thermodynamic data collection

Reaction Mechanism Generator (RMG)
Segregated in the form of libraries
NASA and Group Additivity formats

Cy(T), H°(T) and S°(T), for two different temperature regimes
were available.
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Highcharts of the same and Gibbs free energy
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Initial Network Setup - Representation

class Atom()

Attributes: Member functions:
> _name > init__QO
» number > get_max_valency()
> _element » current_valency()

>

> _valency get_total_valency()
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Initial Network Setup - Representation

class Atom()

Attributes: Member functions:
> _name > init__QO
» number get_max_valency()

> _element current_valency()

> _valency get_total_valency()
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Initial Network Setup
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Figure 2: Initial network setup. Methane, Ammonia and Water are formed
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Initial Network Setup

» H:C:O: N inratio of
4:1:1:1, with a scaling
factor of 8.

> Initial edges resulting in
the formation of 2 C' Hy,
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Figure 2: Initial network setup. Methane, Ammonia and Water are formed
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What is the input for our model?

» Unknown - thermodynamic data.
» Network H - as a database that stores AG values for intermediates.

» input_G() - incorporates AG from H or takes input from user.
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Random Graph Generation

Bond distribution vs iterations
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Figure 3: Maximum number of bonds that can be formed
across iterations
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Random Graph Generation

Bond distribution vs iterations
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Figure 3: Maximum number of bonds that can be formed
across iterations
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Ensuring electrical neutrality
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Figure 4: Neighboring atom doesn’t
have satisfied valency
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Simulated Annealing

> Minimize sum total Gibbs free energy of network
> Probability p:

_(AG?ot,current - AG?ot,best)>
T

T = (0'995)it6rationﬂntml

= e

» Enhanced sampling: rearrange_connected_components
e random.uniform(0.0, 1.0) <0.1: Complete reshuffling
o 0.1 <random.uniform(0.0, 1.0) < 0.6: Two reshufflings
e 0.6 <random.uniform(0.0, 1.0) <0.8: One reshuffling
o random.uniform(0.0, 1.0) > 0.8: No reshuffling
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Reaction simulation

Mediated by Hydrogen atoms
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Reaction simulation

Mediated by Hydrogen atoms
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Figure 6: Reactants: Formaldehyde and Hydrogen Cyanide
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Reaction simulation

Mediated by Hydrogen atoms
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Figure 6: Reactants: Formaldehyde and Hydrogen Cyanide Figure 7: Products: Glyoxylonitrile and Iminoacetaldehyde
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Strecker Reaction
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Figure 8: Strecker amino acid synthesis
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Glycine synthesis

Figure 9: Initial reactant - Formaldehyde



Introduction Methods & Algorithm Results Challenges Acknowledgement
o 000000000 ®00 o o

Glycine synthesis

Figure 9: Initial reactant - Formaldehyde

H105

Him "

Figure 10: Addition of ammonia - Aminomethanol
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Glycine synthesis
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Figure 9: Initial reactant - Formaldehyde
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Figure 12: Acid hydrolysis - Glycine
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Alanine synthesis

Figure 13: Initial reactant - Acetaldehyde
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Alanine synthesis
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Figure 13: Initial reactant - Acetaldehyde
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Figure 14: Addition of ammonia - Ethylamine
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Alanine synthesis
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Figure 13: Initial reactant - Acetaldehyde Figure 15: Addition of H C' N: 2-Aminopropanenitrile
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Figure 13: Initial reactant - Acetaldehyde Figure 15: Addition of H C' N: 2-Aminopropanenitrile
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Figure 14: Addition of ammonia - Ethylamine Figure 16: Acid hydrolysis - Alanine
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> Key intermediates:

e Glycine: Formaldehyde, Aminoacetonitrile and Hydrogen Cyanide
o Alanine: Acetaldehyde, Ethylamine and Hydrogen Cyanide
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> Key intermediates:

e Glycine: Formaldehyde, Aminoacetonitrile and Hydrogen Cyanide
o Alanine: Acetaldehyde, Ethylamine and Hydrogen Cyanide

» Gibbs free energy across reaction coordinates

Gibbs free energy across time for Glycine synthesis Gibbs free energy across time for Alanine synthesis
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Figure 17: Gibbs free energy across reaction coordinates for Figure 18: Gibbs free energy across reaction coordinates for
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Challenges

» Electrically charged compounds

o Unavailability of Gibbs free energy data
e We overcame by introducing function - get _neutral_compound ()
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Challenges

» Electrically charged compounds

o Unavailability of Gibbs free energy data
e We overcame by introducing function - get _neutral_compound ()

» Computationally expensive
e Reduced number of simulations of Lewis Acid-Base reaction.



Introduction Methods & Algorithm Results Challenges Acknowledgement
o 000000000 000 o °

Thank You!

Figure 19: Stanley L. Miller overlooking a spark discharge apparatus 1994. (ORoger Ressmeyer/CORBIS)
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