Engrams: Memory Retrieval and Forgetting

Sowmya Manojna Narasimha 1 December 2022

Introduction

Introduction	Engrams	Memory Retrieval	Molecular Basis	Conclusions	Reference
OOO	0000	000	OO	000	OO
Memory					

- Encoding, consolidation, retrieval and storage.
- Engrams are physical substrates of memory.
- Neurons that are activated by learning and memory retrieval could form the cellular substrate of engrams.

Introduction	Engrams	Memory Retrieval	Molecular Basis	Conclusions	Reference
○○●	0000	000	OO	000	OO
Аім					

• Can we identify these engram neurons?

- How do they differ from the non-engram neurons?
- What are the molecular changes that cause these differences?

Introduction	Engrams	Memory Retrieval	Molecular Basis	Conclusions	Reference
○○●	0000	000	OO	000	OO
Аім					

- Can we identify these engram neurons?
- How do they differ from the non-engram neurons?
- What are the molecular changes that cause these differences?

Introduction	Engrams	Memory Retrieval	Molecular Basis	Conclusions	Reference
○○●	0000	000	OO	000	OO
Аім					

- Can we identify these engram neurons?
- How do they differ from the non-engram neurons?
- What are the molecular changes that cause these differences?

Engrams

Introduction	Engrams	Memory Retrieval	Molecular Basis	Conclusions	Reference
000	O●OO		OO	000	00
ENGRAM IDE	NTIFICATION				

- Conditional gene expression and activity based gene expression.
- Localized learning
- Overlap between learning and memory retrieval neurons.
- Correlation doesn't imply causation.

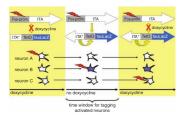


Figure 1: TetTag system used for engram identification. [1]

Figure 2: TetTag system causes all the active neurons during DOX-off condition to be tagged. [1]

Introduction	Engrams	Memory Retrieval	Molecular Basis	Conclusions	Reference
000	00●0	000	OO	000	OO

IS ENGRAM ACTIVATION NECESSARY AND SUFFICIENT FOR MEMORY RETRIEVAL?

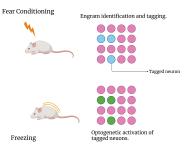
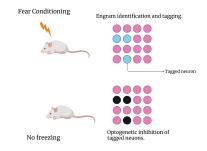



Figure 3: Engram cell activation is sufficient for memory retrieval [2].

- c-fos-tTA mice
- AAV-TRE-ChR2-EYFP vector; ChR2 enables optogenetic stimulation.
- Engram activation is sufficient for memory retrieval.

- c-fos-tTA/tetO-Cre/tetO-H2B-GFP mice
- AAV-FLEX-Archaerhodopsin (ArchT) vector; ArchT enables optogenetic inhibition.
- Engram activation is necessary for memory retrieval.

How do engram cells differ from non-engram cells?

Introduction	Engrams	Memory Retrieval	Molecular Basis	Conclusions	Reference
000	000●	000	OO	000	OO

HOW DO ENGRAMS DIFFER FROM NON-ENGRAM CELLS?

- EPSC amplitude is higher in engram cells than non-engram cells.
- AMPAR/NMDAR current ratio is higher in engram cells.
- Engram cells have higher dendritic spine density.
- If these characteristic are reversed, is memory retrieval disrupted?

Memory Retrieval

Introduction	Engrams	Memory Retrieval	Molecular Basis	Conclusions	Reference
000	0000	○●○	OO	000	OO

DOES REVERSAL OF THE PHYSIOLOGICAL CHANGES AFFECT MEMORY RETRIEVAL?

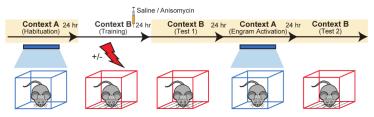


Figure 5: Amnesia induction and reversal of physiological changes [4].

- Protein synthesis inhibition reversed all physiological changes.
- Optogenetic activation rescued memory retrieval
- Memory storage is still intact in induced retrograde amnesia. Only the retrieval is impaired.
- Memory consolidation is protein synthesis dependent.
- Is memory retrieval protein synthesis dependent?
- Protein synthesis inhibitors applied just prior to memory retrieval resulted in forgetting.

Introduction	Engrams	Memory Retrieval	Molecular Basis	Conclusions	Reference
000	0000	○○●	OO	000	OO

LTP AND LTD MEDIATED MEMORY RETRIEVAL

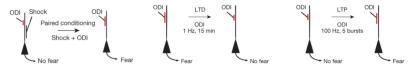


Figure 6: Experimental set up used to provide a causal link between LTP/LTD and memory retrieval [5].

- Upon inducing LTD, memory retrieval is impaired.
- Upon inducing LTP, memory retrieval is rescued.
- This process is highly plastic and can be repeated multiple times.
- LTP is both necessary and sufficient for memory retrieval.
- What is the role of AMPAR, NMDAR in memory retrieval?

Molecular Basis

Introduction	Engrams	Memory Retrieval	Molecular Basis	Conclusions	Reference
000	0000		○●	000	OO

ROLE OF AMPAR AND NMDAR IN MEMORY RETRIEVAL.

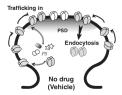


Figure 7: Process of AMPAR trafficking at the synapse. The image depicts both NMDAR mediated and non-NMDAR mediated AMPAR trafficking.

- NMDAR inhibitors
 - Prevent AMPAR recycling
 - Maintain constant density of AMPAR at the synapse
 - Prevent decay of short term memory.
- GluA2_{3Y} prevents endocytosis of AMPAR and hence, prevents decay of short term memory.
- PKMζ prevents endocytosis of AMPAR and doesn't result in hindered memory retrieval.
- GluA2_{3Y} mediated prevention of AMPAR endocytosis significantly decreased memory loss in Alzheimer's animal models.

Conclusions

Introduction	Engrams	Memory Retrieval	Molecular Basis	Conclusions	Reference
000	0000	000	OO	OOO	OO
Conclusion					

The review covered topics related to

- Engram identification, activation and their role in memory retrieval.
- The effects of the physiological changes of engrams in their ability to retrieve memories.
- The molecular basis underlying the engram's ability to retrieve information.
- Engram accessibility mediated forgetting.

Introduction	Engrams	Memory Retrieval	Molecular Basis	Conclusions	Reference
000	0000		OO	○○●	OO
FUTURE DI	RECTIONS				

- What happens during memory storage? What are the mechanisms mediating it?
- Do multiple engrams interact? If so, how do they interact at the network level?
- The biological basis of memory storage can be incorporated into reinforcement learning agents, creating efficient continual learning, while avoiding catastrophic forgetting.

Reference

Introduction	Engrams	Memory Retrieval	Molecular Basis	Conclusions	Reference
000	0000		OO	000	○●
References 1					

- L. G. Reijmers, B. L. Perkins, N. Matsuo, and M. Mayford, "Localization of a stable neural correlate of associative memory," *Science*, vol. 317, no. 5842, pp. 1230–1233, 2007.
- X. Liu, S. Ramirez, P. T. Pang, C. B. Puryear, A. Govindarajan, K. Deisseroth, and S. Tonegawa, "Optogenetic stimulation of a hippocampal engram activates fear memory recall," *Nature*, vol. 484, no. 7394, pp. 381–385, 2012.
 - K. Z. Tanaka, A. Pevzner, A. B. Hamidi, Y. Nakazawa, J. Graham, and B. J. Wiltgen, "Cortical representations are reinstated by the hippocampus during memory retrieval," *Neuron*, vol. 84, no. 2, pp. 347–354, 2014.

T. J. Ryan, D. S. Roy, M. Pignatelli, A. Arons, and S. Tonegawa, "Engram cells retain memory under retrograde amnesia," *Science*, vol. 348, no. 6238, pp. 1007–1013, 2015.

S. Nabavi, R. Fox, C. D. Proulx, J. Y. Lin, R. Y. Tsien, and R. Malinow, "Engineering a memory with ltd and ltp," *Nature*, vol. 511, no. 7509, pp. 348–352, 2014.